6 research outputs found

    >

    No full text

    RELATION BETWEEN LEFT VENTRICULAR UNLOADING DURING ECMO AND DRAINAGE CATHETER SIZE ASSESSED BY MATHEMATICAL MODELING

    Get PDF
    The flow-dependent left ventricle overload is a well-known complication of the veno-arterial extracorporeal membrane oxygenation in a severe cardiogenic shock, which leads to a distension of the left ventricle and, frequently, to a severe pulmonary edema. Recently, an unloading of the left ventricle using a catheter inserted to the left ventricle and connected to the extracorporeal membrane oxygenation circuit has been proposed. The computational method was used to simulate the blood flow in the extracorporeal membrane oxygenation system with a drainage catheter incorporated to the left ventricle and connected to the inflow part of the extracorporeal membrane oxygenation circuit by a Y-shaped connector. The whole system was modelled in Modelica modelling language. The impact of various catheter sizes (from 5 Fr to 10 Fr) and extracorporeal blood flow values (from 1L/min to 5 L/min) were investigated. In our simulation model, the extracorporeal blood flow only modestly affected the value of volume that was withdrawn from the left ventricle by a catheter. Conversely, the size of the drainage catheter was the principal factor responsible for the achievement of the adequate left ventricle decompression. A 10 Fr drainage catheter, inserted into the left ventricle and connected to the venous part of the ECMO system, presents a promising solution to the unloading of the left ventricle during a extracorporeal membrane oxygenation

    Micro-Computed Tomography Soft Tissue Biological Specimens Image Data Visualization

    No full text
    Visualization of soft tissues in microCT scanning using X-rays is still a complicated matter. There is no simple tool or methodology on how to set up an optimal look-up-table while respecting the type of soft tissue. A partial solution may be the use of a contrast agent. However, this must be accompanied by an appropriate look-up-table setting that respects the relationship between the soft tissue type and the Hounsfield units. The main aim of the study is to determine experimentally derived look-up-tables and relevant values of the Hounsfield units based on the statistical correlation analysis. These values were obtained from the liver and kidneys of 24 mice in solutions of ethanol as the centroid value of the opacity look-up-table area under this graph. Samples and phantom were scanned by a Bruker SkyScan 1275 micro-CT and Phywe XR 4.0 and processed using CTvox and ORS Dragonfly software. To reconstruct the micro-CT projections, NRecon software was used. The main finding of the study is that there is a statistically significant relationship between the centroid of the area under the look-up-table curve and the number of days for which the animal sample was stored in an ethanol solution. H1 of the first hypothesis, i.e. that suggested the Spearman’s correlation coefficient does not equal zero (r1 ≠ 0) regarding this relationship was confirmed. On the other hand, there is no statistically significant relationship between the centroid of the area under the look-up-table curve and the concentration of the ethanol solution. In this case, H1 of the second hypothesis, i.e. that the Spearman’s correlation coefficient does not equal zero (r2 ≠ 0) regarding this relationship was not confirmed. Spearman’s correlation coefficients were −0.27 for the concentration and −0.87 for the number of days stored in ethanol solution in the case of the livers of 13 mice and 0.06 for the concentration and 0.94 for the number of days stored in ethanol solution in the case of kidneys of 11 mice

    Influence of Artificially Generated Interocular Blur Difference on Fusion Stability Under Vergence Stress

    Get PDF
    The stability of fusion was evaluated by its breakage when interocular blur differences were presented under vergence demand to healthy subjects. We presumed that these blur differences cause suppression of the more blurred image (interocular blur suppression, IOBS), disrupt binocular fusion and suppressed eye leaves its forced vergent position. During dichoptic presentation of static grayscale images of natural scenes, the luminance contrast (mode B) or higher-spatial frequency content (mode C) or luminance contrast plus higher-spatial frequency content (mode A) were stepwise reduced in the image presented to the non-dominant eye. We studied the effect of these types of blur on fusion stability at various levels of the vergence demand. During the divergence demand, the fusion was disrupted with approximately half blur than during convergence. Various modes of blur influenced fusion differently. The mode C (isolated reduction of higher-spatial frequency content) violated fusion under the lowest vergence demand significantly more than either isolated or combined reduction of luminance contrast (mode B and A). According to our results, the image's details (i.e. higher-spatial frequency content) protects binocular fusion from disruption by the lowest vergence demand

    Micro-Computed Tomography Soft Tissue Biological Specimens Image Data Visualization

    No full text
    Visualization of soft tissues in microCT scanning using X-rays is still a complicated matter. There is no simple tool or methodology on how to set up an optimal look-up-table while respecting the type of soft tissue. A partial solution may be the use of a contrast agent. However, this must be accompanied by an appropriate look-up-table setting that respects the relationship between the soft tissue type and the Hounsfield units. The main aim of the study is to determine experimentally derived look-up-tables and relevant values of the Hounsfield units based on the statistical correlation analysis. These values were obtained from the liver and kidneys of 24 mice in solutions of ethanol as the centroid value of the opacity look-up-table area under this graph. Samples and phantom were scanned by a Bruker SkyScan 1275 micro-CT and Phywe XR 4.0 and processed using CTvox and ORS Dragonfly software. To reconstruct the micro-CT projections, NRecon software was used. The main finding of the study is that there is a statistically significant relationship between the centroid of the area under the look-up-table curve and the number of days for which the animal sample was stored in an ethanol solution. H1 of the first hypothesis, i.e. that suggested the Spearman’s correlation coefficient does not equal zero (r1 ≠ 0) regarding this relationship was confirmed. On the other hand, there is no statistically significant relationship between the centroid of the area under the look-up-table curve and the concentration of the ethanol solution. In this case, H1 of the second hypothesis, i.e. that the Spearman’s correlation coefficient does not equal zero (r2 ≠ 0) regarding this relationship was not confirmed. Spearman’s correlation coefficients were −0.27 for the concentration and −0.87 for the number of days stored in ethanol solution in the case of the livers of 13 mice and 0.06 for the concentration and 0.94 for the number of days stored in ethanol solution in the case of kidneys of 11 mice
    corecore